Analysis of the Hessian for Inverse Scattering Problems. Part II: Inverse Medium Scattering of Acoustic Waves
نویسندگان
چکیده
We address the inverse problem for scattering of acoustic waves due to an inhomogeneous medium. We derive and analyze the Hessian in both Hölder and Sobolev spaces. Using an integral equation approach based on Newton potential theory and compact embeddings in Hölder and Sobolev spaces, we show that the Hessian can be decomposed into two components, both of which are shown to be compact operators. Numerical examples are presented to validate our theoretical results. The implication of the compactness of the Hessian is that for small data noise and model error, the discrete Hessian can be approximated by a low-rank matrix. This in turn enables fast solution of an appropriately regularized inverse problem, as well as Gaussian-based quantification of uncertainty in the estimated inhomogeneity.
منابع مشابه
Analysis of the Hessian for inverse scattering problems: II. Inverse medium scattering of acoustic waves
We address the inverse problem for scattering of acoustic waves due to an inhomogeneous medium. We derive and analyze the Hessian in both Hölder and Sobolev spaces. Using an integral equation approach based on Newton potential theory and compact embeddings in Hölder and Sobolev spaces, we show that the Hessian can be decomposed into two components, both of which are shown to be compact operator...
متن کاملAnalysis of the Hessian for Inverse Scattering Problems. Part Iii: Inverse Medium Scattering of Electromagnetic Waves in Three Dimensions
Continuing our previous work [6, Inverse Problems, 2012, 28, 055002] and [5, Inverse Problems, 2012, 28, 055001], we address the ill-posedness of the inverse scattering problem of electromagnetic waves due to an inhomogeneous medium by studying the Hessian of the data misfit. We derive and analyze the Hessian in both Hölder and Sobolev spaces. Using an integral equation approach based on Newton...
متن کاملAnalysis of the Hessian for Inverse Scattering Problems. Part I: Inverse Shape Scattering of Acoustic Waves
We derive expressions for the shape Hessian operator of the data misfit functional corresponding to the inverse problem of inferring the shape of a scatterer from reflected acoustic waves, using a Banach space setting and the Lagrangian approach. The shape Hessian is then analyzed in both Hölder and Sobolev spaces. Using an integral equation approach and compact embeddings in Hölder and Sobolev...
متن کاملAnalysis of the Hessian for inverse scattering problems: I. Inverse shape scattering of acoustic waves
We derive expressions for the shape Hessian operator of the data misfit functional corresponding to the inverse problem of inferring the shape of a scatterer from reflected acoustic waves, using a Banach space setting and the Lagrangian approach. The shape Hessian is then analyzed in both Hölder and Sobolev spaces. Using an integral equation approach and compact embeddings in Hölder and Sobolev...
متن کاملInverse Acoustic and Electromagnetic Scattering Theory
This paper is a survey of the inverse scattering problem for time-harmonic acoustic and electromagnetic waves at fixed frequency. We begin by a discussion of “weak scattering” and Newton-type methods for solving the inverse scattering problem for acoustic waves, including a brief discussion of Tikhonov’s method for the numerical solution of ill-posed problems. We then proceed to prove a uniquen...
متن کامل